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Abstraet-A uniformly valid approximate solution of Hart's constitutive equation is presented
in this paper for the special case of a constant, nonelastic strain rate tensile test. The method
of matched asymptotics is used in the analysis. A principal result is that for sufficiently low
temperature or high nonelastic strain rate. the "viscoplastic limit" is a good approximation to
the solution of Hart's equations. The combined effect of temperature and strain rate on the
behavior of these equations is shown to be characterized by two nondimensional parameters
tl and t2. It is found that with a judicious choice of these parameters, the numerical integration
of Hart's equation can be easily carried out. The numerical results validate the viscoplastic
approximation. A comparison of numerical results and the analytic solution are presented.

INTRODUCTION

The increasing demand for reliability of metallic structures has stimulated improvement
of constitutive relations for the inelastic deformation of metals and alloys. This has led
to the development of a phenomenological theory of deformation that is capable of
describing the time and temperature dependence of plastic flow, in contrast to the time
independent description of classical plasticity.

The differential equations from these constitutive models are, in general, highly
nonlinear. Closed-form solutions cannot be obtained even if the loading history and
the geometry of the specimen considered are highly idealized. These difficulties hinder
the interpretation and applicability of such theories. Instead of considering the general
problem of integrating these equations for various theories, we shall restrict our con
siderations in the present study to the phenomenological theory proposed by Hartl I,
2]. So far, approaches to the integration problem have been ofa purely numerical nature.
Very few efforts have been made to investigate the analytical properties of these equa
tions, their effects on the numerical methods or the dependence of the solution of these
equations on different parameters. The purpose of this study is to investigate the in
tegration problem by a detailed analysis of the constant, nonelastic strain rate problem
using the approaches outlined above.

Hart's phenomenological model is summarized in the first section. The differential
equation governing a given constant, nonelastic strain rate E is derived. Some of the
numerical difficulties associated with this problem are briefly summarized. The idea
of the "viscoplastic limit" is described, and its role in the numerical computation is
discussed. In the second section, the governing equations are analyzed for the case of
low temperature (or high strain rate) using the method of matched asymptotics. In the
third section, numerical results are presented to further support the results of the second
section.

The special case of constant, nonelastic strain rate E iii Etot - &1E (where EtDt is
the strain rate and E is Young's modulus) analyzed in this study may be questioned.
Constant E does not occur either in tests at constant total deformation rate Etot or at
constant stress rate &. In fact, constant E corresponds to a stress history that begins
with a jump (to accommodate the elastic strain) and then continues to increase at a
nonconstant rate. This deformation history thus has, perhaps, little direct relevance to
common material tests. It is used in this work, however, because it simplifies the
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governing equHtions and leads to results that may possibly be generalized to a wider
range of deformation histories.

EQUATION SUMMARY AND BACKGROUND

Hart's constitutive model us upplied to the uniaxial case will be summarized in
this section. We will briefly describe some of the numerical problems associated with
these equations. The concept of viscoplastic limit will also be summarized below.

Hart's constitutive equations in the uniaxial case are relationships among the cur
rent values of the applied stress CT, the observable nonelastic strain rate E, two state
variables CT* and a, the time rate of change of CT* and a and the absolute temperature
T. In Hart's formulation, the strain is the logarithmic strain, and the stress is the true
stress. The equations also depend on various material constants, which will be described
below. Physically, CT* is interpreted as a measure of the current state of hardness of
the material and a is a measure of the anelastic strain. These equations can be gener
alized to the multiaxial case as given by Hart[2].

The constraint conditions in Hart's model are

and

e=a+ci (I)

(2)

Equation (1) expresses the assumption that the total inelastic strain rate can be
written as the sum of the anelastic strain rate aand the plastic strain rate a. Equation
(2) expresses the assumption that the applied stress CT is the sum of two stress quantities
CTtI and CTf (the anelastic stress and the frictional stress). These stresses are defined by
the following constitutive relationship with the strain or strain rate quantities a and
E, respectively, Le.

and

[
. JI/M

crf = a*~T) ,

(3)

(4)

where .M. and M are positive material constants. The function a*(T) is determined by
experiment. Typical values are M == 9 and .M. of the order of G, the shear modulus, at
temperature T. The plastic strain rate ci in eqn (1) is related to cra and the hardness
state variable CT* by

(
cr*)m ( CT*)-I

ci = D G In;: , (5)

where m and I are positive material constants. In Hart's work[2], D is a material pa
rameter given as

(6)

where R is the gas constant, <p the activation energy for atomic self-diffusion of the
metallic species and f a material constant to be determined by experiments. The re
covery term is not included in eqn (5) because its effects are negligible at low tem-
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peratures. Equation (6) implies that D is an extremely sensitive function of the absolute
temperature T. Also, in Hart's paper[2], I is defined to be I/A. Typical values of some
of the constants are m = 4-5, I == 6.6,

To complete the constitutive model, the evolution of the hardness state variable
a* is given by Hart[2]:

.* C* (a,,)k (G)'" .a=a - - a
a* a*

=DCa* (::Y(In ::) -I.

(7a)

(7b)

The differential equations governing a constant, applied, nonelastic strain rate Ecan
be obtained by combining eqns (1) and (3) with eqns (5) and (7b), Le.

d * ( )k ( *)-1. a ~ a
a* == - = DCa* -; In -

dl (1 (1"

(8)

(9)

The solution of these two first-order nonlinear equations completely determines all the
unknown variables, as al can be calculated from the given strain rate Eusing eqn (4).
The stress a can then be calculated using eqn (2).

The initial value problem of a*(1 = 0) = a: and a,,<t = 0) = 0 will be considered
in the rest of this article. Since the system of first-order equations [(8) and (9)] is
autonomous for constant E, we can eliminate the variable I and obtain

da* DCa* (at)<1*)k (In a*la,,)-1
dao = A[E - D(a*/G)'" (1n a*laa)-r

(10)

Numerical difficulties in integrating eqn (10) or eqns (8) and (9) arise in the regime
of low temperature or very high strain rates. The material parameters D, C, m, I and
k for pure nickel at room temperature are D = 6.4 X 10- 23 , C = 9.0 X 10-9 , m =
5, I = 6.6 and k = 7 (K. C. Wu, personal communication). The stiffness of eqn (10)
or eqn (8) and (9) is clear if we assume the nonelastic strain rate to be 10-4

• The
extremely small values of D and C imply that there is almost no plastic straining until
a" is extremely close to a*. At this point, the numerical procedure breaks down as the
logarithmic term in eqn (10) becomes extremely large. This numerical instability is
avoided by various investigators[3, 4] using the viscoplastic limit proposed by Van
Arsdale el al.[5]. The basic idea behind the viscoplastic limit is that a" is assumed to
stay very close to a* if the plastic strain rate a is slightly greater than zero. Thus, in
the numerical procedure, a" is set to be equal to a* when a" reaches a certain critical
fraction of a*, say Iau - a* I/a* = 0.001. In general, there is no systematic way of
choosing the critical value of this fraction. Furthermore, the choice of aD = a* clearly
violates the system of differential equations [(8) and (9) or (10)]. Thus, the usual nu
merical procedure is not to integrate the full system of eqns (1), (3), (5) and (7), but
instead to integrate only the system ofequations defined by eqns (I), (3) and (7a), which
do not contain the term (In 0'*/<1,,)-1 explicitly. So far, no rigorous justifications have
been given for the use of the viscoplastic limit (e.g. it is not clear which equations of
the system should be retained and what the effect of the critical fraction is on the
accuracy of the numerical result). Various investigators have attempted to devise new
numerical schemes to integrate this system of equations without using the viscoplastic
limit. These schemes are currently under development and very few results are yet
available.
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ANALYSIS OF GOVERNING EQUATIONS

In this section, we will solve eqn (10) in the case of low temperature (or very high
strain rate) using the method of matched asymptotics. At high temperatures, the gov
erning equations are not stiff enough to present any numerical problems[4]. This is
because D is a very sensitive function of temperature (eqn (6)].

The first step is the nondimensionalization of eqn (10) or eqns (8) and (9). Thc
following nondimensional variables are introduced:

0'*
Y =.,

0'0

O'a
X =.,

0'0

el
,. = (0':1At)' (11)

where O'~ is defined by the initial condition 0'*(1 = 0) = O'ri. With these new nondi
mensional variables, eqns (8) and (9) become

with

and

dy (X)k ( y)-I
d,. = E2Y Y In ;

dx ( )-1- = I - E1ym In ~
d,. x

(12)

(13)

(14)

(15)

Since eqns (12) and (13) are a system of autonomous differential equations, we may
eliminate the variable ,. and obtain the following:

dy E2Y (Xly)k (In yIX)-1
dx = 1 - E1ym (In yIX)-1

with the initial condition

y(x = 0) = I.

The assumption of low temperature or high strain rate implies that the conditions

(16)

(17)

E2 ~ 1, EI ~ 1 (18)

are satisfied. For the case of nickel at room temperature, EI = 2.05 X 10- 32 and E2

= 1.23 X 10- 29
• The equivalence of high strain rate and low temperature is clearly

seen from eqns (14) and (15). Notice that the term D is solely responsible for the
temperature dependence of EI and E2. As D can change by many orders of magnitude,
dependent on the temperature change, it plays a much stronger role in determining the
stiffness of these equations than the nonelastic strain rate. For example, for nickel at
room temperature, changing efrom 10-4 to 10- 10 would not change the stiffness of
eqn (16) appreciably. The advantage of this nondimensionalization is now clear; by a
judicious choice of these parameters, the validity of the viscoplastic limit can be ex
amined numerically. This approach will be pursued in the next section. We will now
present the uniform asymptotic solution of eqn (16) for all practical ranges of J :s; y :s;

JOZ.
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The form of eqn (16) suggests that for very small EI and E2, y will be practically
independent of x (i.e. )' ::::: I) until x approaches I. As x approal.:hes I, we antidpatc
an abrupt change in the behavior of)' (i.e. the material starts hardening and nonelastic
flow occurs). We also expect that after this abrupt change, x remains close to )' as )'
inl.:reases beyond I. We therefore antkipate a mathematil.:al internal boundary laycr
located approximately at x = 1. We will first analyze the behavior of)' (i.e. one of the
outer solutions) for x < 1. We begin by assuming a regular perturbation expansion of
the form

)' = 1 + E~)'~ + E,)', + terms of order higher than E~ or E.. (19)

where )'2 and )'1 are assumed to be of the order 1. Substituting this into eqn (16) and
matching order in Eland E2, it is easy to verify that

YI = 0

Y2 = (oK 13k (-ln 13)-1 d13.Jo

(20)

Note that Y2 satisfies the condition )'2(X = 0) = O. This has to be the case as yeO) =
1. Note also that the effect of EI matters only if one seeks higher-order terms in the
asymptotic series eqn (19). Thus, for x < I,

)' - 1 + E2 LX 13k
( -In 13)-1 d13 + higher-order terms. (21)

As mentioned previously, eqn (21) cannot be uniformly valid for all values ofx. Equation
(21) implies that as x - I, the assumption that )'2 is of the order I will no longer be
correct. The region about x = I in which the outer solution is not valid can be estimated
by solving

(22)

assuming y - I and x = 1 - 8. To the first order, 8 is found to be dl/. We now define
the stretching variables i and y:

x-I
i = -'-1/E2

- y - I
y = -'-1'-'E2

(23)

(24)

(25)

Equation (24) implies that we are interested only in first-order solutions.
The estimation of the boundary layer [eqn (22)] has made use of the assumption

that EI < E2. A more rigorous justification is to use the concept of distinguished limit,
in which EI = £~ for some positive p. If p > 1, then £1 ~ £2. If 0 < p < I, then £. ~
£2' Thus, for the case of p > I, we anticipate the thickness of the boundary layer is
of the order 82 == dll [using eqn (22)]. For the case of0 < p < 1, we expect the boundary
layer thickness to be given by £~II or by £III a 8•. This is because the boundary layer
thickness is now estimated by solving

I - £~y'" (In ;) -I _ 0

to the first order.



416 c.·Y. JllIl

A change of the dependent variable proves to be useful at this point, if we let

Equation (16) becomes

z = ~.
x

dz E2XZ- k+ I (In Z)-I

z + x dx = I - E1x"'Zm (In Z)-I'

(26)

(27)

The regular perturbation series [eqn (21)] for x < ] becomes, to the first order,

I E2 LXz - - + - 13k (-In (3)-1 dl3.
x x 0

(28)

Consistent with eqns (23) and (24), we define the stretch variables i and i by

z = + E~II i = I + 52i

x = + dll i = I + 52i

(29)

(30)

for the case of p ~ ]. Substituting eqns (29) and (30) into eqn (23), keeping terms no
higher than first order and using the fact that In(l + (3) = 13 for small positive 13, we
have

di r l

I + - = ------,
di - rZ-'

with

The solution of eqn (31) is

- i'" dl3z - = -i + constant,
i 131

- b2

where b2 is defined to be

(31)

(32)

(33)

Note that since I is always much greater than 1, there is no convergence problem with
the integral

The constant in eqn (32) has to be determined by matching with the outer solution [eqn
(28)]. Assuming there is a matching region, we expand the outer solution [eqn (28)] in
terms of i and i, and the result is

i - -i - I ~ ] (- i)-I+ I + higher-order terms. (34)
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Matching requires that as i -+ - 00, eqns (34) and (32) agree to the same order.
Thus. the const.mt term in eqn (32) must be set to zero. i(.l') is now completely deter
mined by

-i. (35)

It is easy to verify that in the other limit, where EI = E2 and 0 < p < I, the internal
boundary layer solution i defined by

z = + EJ!' i

x = + El" i

is given implicitly by

(36)

= -i. (37)

where

We next consider the outer solution in the region x > I. Here, we anticipate that

(38)

(39)

and that dp/dx -+ 0 as EI, E2 -+ O. Using these assumptions, we substitute eqn (39) into
(27) and find to the first order

(40)

Note that dz/dx indeed goes to 0 as EI, E2 -+ 0 for any finite x. The uniformity of the
asymptotic result is ensured by

z(x -+ I) = lim [I + (E2X + EIXn)ll/]
..... 1

= + (E2 + EI)III

= + E}/1 (lim i),
X-.%l

i = 1,2.

The above equation implies that the internal boundary layer solution matches with the
outer solution for x> I, To summarize, the uniform approximate solution for eqn (17)
is

y - I + E2 f: ~k (-In ~)-' d~, x<1

x> I.

(41)

(42)

In the boundary layer, the solution y is given implicitly by

- roc d~
z - Ai)t ~'_ hi = -i, (43)
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where i = I if 0 < p < I, i = 2 if p > 1,)\1 = I and A2 = E2/E\. Y is related to i. and
i by eqns (23), (24) and (26). To the first order, this is

y = i. + i. (44)

The asymptotic results above imply that the internal boundary layer has a thickness
of the order of 8 = max(d/', EV'). For pure nickel at room temperature with an applied
nonelastic strain rate E = 10-4, 0 == O(lO-~). For our assumed values of EI and E2' eqn
(42) implies y == x + 0(10- 4

) or a* = a" + 0(10- 4
) a" once yielding occurs. Thus.

the error made by the viscoplastic limit approximation (i.e. by selling IT" = IT*) is less
than several psi, assuming that ari = 2.2 x 104 psi at 25°C. For the case of nickel at
room temperature, it is clear that we could treat a* as independent ofau until a" reached
a~ - 0(8). For au ~ a~ - 0(0), we can use the approximation a* = au. Numerically,
the plastic strain rate a can be integrated by using eqn (7a), i.e.

Using (aula*) = I + 0(0) == I, we have

I (a*)'"a = me G + constant.

(45)

(46)

If 0 ~ I, as in nickel, the constant in eqn (46) can be determined approximately by the
condition a = 0 when au = a~. Using au - a* for au > a~, eqn (46) becomes

For a" ::s ari, we have, to the order of 8,

(47)

a = 0, (48)

The above analysis suggests that eqns (47) and (48) remain a good approximation
for more general loading histories as long as there is no unloading. They imply that
Hart's equation for the plastic strain a is equivalent to that of a classical deformation
material (where stress is a point function of strain), as long as one is willing to accept
errors of the order of o. From the above discussion, it is clear that the maximum relative
error made using eqns (47) and (48) is in the transition region. The relative error reduces
appreciably as the material strain hardens, i.e. for a* ~ ari.

We also note that the outer solution [eqn (42)] for x > I is accurate as long as
(E1x'" + E2X)11I ~ t. It is expected that this condition is generally satisfied for all realistic
values of x at low temperatures. For example, for nickel at 25°C and for all x < JQ2
(or aD < JQ2a~ - G/lO), (E\x'" + E2X)"'S 10-4

•

NUMERICAL RESULTS

Numerical results will be presented in this section to support the analytical results
derived in the preceding section. The system of eq'ns (I), (3), (5) and (7) is integrated
numerically without using the viscoplastic limit approximation. The choice of E(, E2 is
such that their values are sufficiently small to reflect the features of the viscoplastic
limit approximation but stiJIlarge enough so that the equations can be integrated without
a substantial amount of numerical difficulty.

The results of the previous section indicate that for sufficiently small values of EI
and E2, the thickness of the transition region is of the order ofo = max(EV', d"). Thus,
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suitable choices for our numerical experiment are

A program developed by MukheJjee[4] is used to integrate these equations without
employing the viscoplastic limit approximation for the case of EI = 10- 10 and E2 =
10- 9

• For convenience, instead of I = 6.6, I = 6 is used in the numerical computation.
Nondimensional plots of <T* vs. <Ta are shown in Figs. I and 2 for these parameters.
The viscoplastic limit approximation is also included in Fig. I as a comparison. In Fig.
2, the scale is chosen so that the transition region can be examined in detail. The outer
solutions for x < I and x> I [i.e. eqns (41) and (42)] are also included in this figure.
Figure 2 clearly indicates that for x < 0.%5, the outer solution [eqn (41)] is practically
identical to the numerical results. For x > 0.975, the outer solution [eqn (42)] is in
distinguishable from the numerical solution. Note that if we extrapolate the numerical
solution for x > 0.98 using a straight line, the value of the x intercept of this line is
-0.97. Thus, the distance of this intercept from the point <Ta = <Tri or x = I is -0.03
and is approxim",tely equal to 8 = 0.0316. Figures I and 2 also show that although the
values of EI and E2 in this example are much larger than that of nickel at room tem
perature, the viscoplastic limit approximation gives a very reasonable estimate of the
numerical result within error of the order of 8. The results presented in Fig. 2 show
that the boundary layer solution [eqn (43)] matches extremely well with the outer so
lutions [eqns (41) and (42)]. The agreement of the boundary layer solution with the
numerical result is also excellent. A composite solution is not possible for the entire
range of values of x, as one of the outer solutions [eqn (41)] diverges as x - 1. In the
numerical integration, the maximum step size is determined by the condition that de
creasing the step size does not change the values of all the dependent variables (in
cluding the rate quantities). For this set of parameter values, maximum step size of
10- 4 satisfies this criterion. We notice, however, that increasing the maximum step
size from 10- 3 to 10- 2 changes the values of the rate quantities substantially (e.g.
Ii), although no practical changes are observed for the variables a, <T* and <Ta •

Visco-PLASTIC LIMIT

NUMERICAl RESULT
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CONCLUSION

The analytical and numerical results presented in the previous sections clearly
justify the viscoplastic limit approximation for the case of the tensile test for constant,
nonelastic strain rate and low temperatures. The governing equations in this case de
pend on two nondimensional parameters, EJ and E2. The approximate behavior of the
solution for au > ari (or x > I) is

At low temperature, EI and E2 are generally small so that the second term is almost
insignificant compared with the first for all practical values of au, i.e. aulari < 102. The
validity of the viscoplastic limit approximation can also be shown by examining the
qualitative behavior of Hart's equations. This will be presented in future work. The
uniformly valid asymptotic solution predicts very rapid changes of plastic strain rate
in a small region of the order of 8 = max(£l", d") about au "" ari. The amount of
accumulated plastic strain at this level of stress is only of the order of 8. Since, at low
temperatures, the values of El and £2 are extremely small, a possible numerical pro
cedure is to use the viscoplastic limit approximation when au = a6 - 0(8) a6. Our
solution suggests that for low temperature applications, the plastic element in Hart's
model can be treated approximately as a deformation element. The error made in using
this approximation is of the order of 8.
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